NERP-CRF: uma ferramenta para o reconhecimento de entidades nomeadas por meio de Conditional Random Fields

Daniela Oliveira F. do Amaral, Renata Vieira

Resumo


Conditional Random Fields (CRF) é um método probabilístico de predição estruturada que tem sido amplamente aplicado em diversas áreas, tais como a de Processamento da Linguagem Natural (PLN), incluindo o Reconhecimento de Entidades Nomeadas (REN), visão computacional e bioinformática. Nesse sentido, propõe-se a realização da tarefa de REN aplicando o método CRF e, sequencialmente, é feita uma avaliação do seu desempenho com base no corpus do HAREM. Conclui-se que, nos testes realizados, o sistema NERP-CRF obteve os melhores resultados de Precisão quando comparado com os sistemas avaliados no mesmo corpus, com plenas condições de ser um sistema competitivo e eficaz.


Palavras-chave


Reconhecimento de Entidades Nomeadas, Conditional Random Fields, Processamento da Linguagem Natural, Língua Portuguesa

Texto Completo: PDF

Licença Creative Commons
Este trabalho está licenciado sob uma Licença Creative Commons Attribution 3.0 .

Indexed by Scopus Indexed by Linguistics & Language Behavior Abstracts DBLP Indexed by Directory of Open Access Journals Indexed by REDIB Indexed by Google Scholar