Classificação da qualidade da argumentação em tweets no domínio da política brasileira
Resumen
A argumentação é uma habilidade inerente à comunicação humana, tanto em situações orais quanto escritas. Argumentos bem fundamentados são importantes para amparar a tomada de decisões e aprendizado, assim como para a obtenção de conclusões amplamente aceitas. Como área de pesquisa, a argumentação é um campo multidisciplinar que estuda os processos de debate e raciocínio. Em linguística computacional, investigações têm sido realizadas para (i) identificar argumentos e suas unidades e (ii) gerar ou (iii) avaliar a qualidade dos argumentos. No entanto, a maioria dos trabalhos atuais se concentra na mineração de argumentos em textos formais em inglês. Neste artigo, foi avaliada a qualidade da argumentação em tweets de domínio político, escritos em português do Brasil, usando algoritmos tradicionais de aprendizado de máquina -- como Regressão Logística, K-Nearest Neighbors, Árvores de Decisão, Máquinas de Vetores Suporte (SVM), Floresta Aleatória e Naive Bayes -- e também um ajuste fino de dois modelos neurais (BERTimbau e RobertaTwitterBR). Além de trazer resultados práticos para a avaliação da qualidade da argumentação em um gênero textual desafiador, como o Twitter, e em um domínio controverso, como a política brasileira, este artigo também visa suprir a carência de trabalhos que avaliem automaticamente a qualidade dos argumentos em português. Dentre os algoritmos de classificação avaliados, o modelo obtido a partir do ajuste fino do BERTimbau apresentou os melhores resultados com uma precisão de 69,65\% quando foram consideradas todas as classes e de 100,00\% para as mensagens de alta qualidade de argumentação.
Derechos de autor 2023 Cássio Faria da Silva, Vânia Paula de Almeida Neris, Helena de Medeiros Caseli
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Los autores que envíen sus trabajos a esta revista implícitamente estón de acuerdo con los siguientes términos:
- Los autores retienen los derechos de autor de sus trabajos, permitiendo a esta revista su primera publicación bajo licencia de Creative Commons Attribution License, que permite a otros acceder libremente, usar y compartir dicho trabajo, citando adecuadamente la autoría del trabajo y su presentación en esta revista.
- Los autores pueden prescindir de los términos de licencia de CC y acordar por su cuenta arreglos contractuales adicionales independientes para la distribución no exclusiva y posterior publicación de este trabajo (p.e., para incluirlo en un repositorio institucional o publicarlo en un libro), citando adecuadamente su publicación inicial en esta revista.
- Además, se anima a los autores a poner en línea su trabajo (p.e., en repositorios institucionales o en su propio sitio web) en cualquier momento antes o durante el proceso de envío, ya que eso puede conducir a intercambios productivos y a un número mayor y más temprano de citas del trabajo publicado (Ver The Effect of Open Access).