Exploring Unsupervised Methods to Sematic Textual Similarity
Abstract
This paper presents some unsupervised methods for detecting semantic textual similarity, which are based on distributional models and dependency parsing. The systems are evaluated using the dataset realased by the ASSIN Shared Task co-located with PROPOR 2016. The more basic methods offer better behavior than the more complex ones, which include syntactic-semantic information in sentence analysis. Finally, the use of distributional models built automatically from corpora provides results comparable to strategies that use external lexical resources built manually.
Copyright (c) 2019 Pablo Gamallo, Martín Pereira-Fariña
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).