Social Network Multilingual Author Profiling using character and POS n-grams
Abstract
In this paper we present an algorithm that combines the stylistic features represented by characters and POS n-grams to classify social network multilingual documents. In both n-gram groups a dynamic normalization by context was applied to extract all the possible stylistic information encoded in the documents (emoticons, character flooding, capital letters, references to other users, hyperlinks, hashtags, etc.).
The algorithm was applied to two different corpus; Author Profiling of PAN-CLEF 2015 training tweets and the corpus of "Comments of Mexico City in time" (CCDMX). Results shows up to 90% of accuracy.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).