Avaliando atributos para a classificação de estrutura retórica em resumos científicos
Resumen
A classificação de estrutura retórica é uma tarefa de PLN na qual se busca identificar os componentes retóricos de um discurso e seus relacionamentos. No caso deste trabalho, buscou-se identificar automaticamente categorias em nível de sentenças que compõem a estrutura retórica de resumos científicos. Especificamente, o objetivo foi avaliar o impacto de diferentes conjuntos de atributos na implementação de classificadores retóricos para resumos científicos escritos em português. Para isso, foram utilizados atributos superficiais (extraídos como valores TF-IDF e selecionados com o teste chi-quadrado), atributos morfossintáticos (implementados pelo classificador AZPort) e atributos extraídos a partir de modelos
de word embeddings (Word2Vec, Wang2Vec e GloVe, todos previamente treinados). Tais conjuntos de atributos, bem como as suas combinações, foram usados para o treinamento de classificadores usando os seguintes algoritmos de aprendizado supervisionado: Support Vector Machines, Naive Bayes, K-Nearest Neighbors, Decision Trees e Conditional Random Fields (CRF). Os classificadores foram avaliados por meio de validação cruzada sobre três corpora compostos por resumos de teses e dissertações. O melhor resultado, 94% de F1, foi obtido pelo classificador CRF com as seguintes combinações de atributos: (i) Wang2Vec--Skip-gram de dimensões 100 com os atributos provenientes do AZPort; (ii) Wang2Vec--Skip-gram e GloVe de dimensão 300 com os atributos do AZPort; (iii) TF-IDF, AZPort e embeddings extraídos com os modelos Wang2Vec--Skip-gram de dimensões 100 e 300 e GloVe de dimensão 300. A partir dos resultados obtidos, conclui-se que os atributos provenientes do classificador AZPort foram fundamentais para o bom desempenho do classificador CRF, enquanto que a combinação com word embeddings se mostrou válida para a melhoria dos resultados.
Derechos de autor 2019 Alessandra Harumi Iriguti, Valéria Delisandra Feltrim
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Los autores que envíen sus trabajos a esta revista implícitamente estón de acuerdo con los siguientes términos:
- Los autores retienen los derechos de autor de sus trabajos, permitiendo a esta revista su primera publicación bajo licencia de Creative Commons Attribution License, que permite a otros acceder libremente, usar y compartir dicho trabajo, citando adecuadamente la autoría del trabajo y su presentación en esta revista.
- Los autores pueden prescindir de los términos de licencia de CC y acordar por su cuenta arreglos contractuales adicionales independientes para la distribución no exclusiva y posterior publicación de este trabajo (p.e., para incluirlo en un repositorio institucional o publicarlo en un libro), citando adecuadamente su publicación inicial en esta revista.
- Además, se anima a los autores a poner en línea su trabajo (p.e., en repositorios institucionales o en su propio sitio web) en cualquier momento antes o durante el proceso de envío, ya que eso puede conducir a intercambios productivos y a un número mayor y más temprano de citas del trabajo publicado (Ver The Effect of Open Access).